{ "id": "1511.04400", "version": "v1", "published": "2015-11-13T18:55:35.000Z", "updated": "2015-11-13T18:55:35.000Z", "title": "Discretization of Linear Problems in Banach Spaces: Residual Minimization, Nonlinear Petrov-Galerkin, and Monotone Mixed Methods", "authors": [ "Ignacio Muga", "Kristoffer G. van der Zee" ], "comment": "29 pages", "categories": [ "math.NA" ], "abstract": "This work presents a comprehensive optimal-discretization theory for linear equations in Banach spaces. As part of our theory, a class of nonlinear Petrov-Galerkin projectors is studied, which are key in establishing optimal a priori error estimates involving constants depending on the geometry of the underlying Banach spaces.", "revisions": [ { "version": "v1", "updated": "2015-11-13T18:55:35.000Z" } ], "analyses": { "subjects": [ "65J05", "65J10", "65N30" ], "keywords": [ "banach spaces", "monotone mixed methods", "linear problems", "residual minimization", "nonlinear petrov-galerkin projectors" ], "note": { "typesetting": "TeX", "pages": 29, "language": "en", "license": "arXiv", "status": "editable" } } }