{ "id": "1511.03971", "version": "v1", "published": "2015-11-12T17:06:33.000Z", "updated": "2015-11-12T17:06:33.000Z", "title": "Nonlinear Piecewise Polynomial Approximation and Multivariate $BV$ spaces of a Wiener--L.~Young Type. I", "authors": [ "Yu. Brudnyi" ], "comment": "37 pages", "categories": [ "math.CA", "math.FA" ], "abstract": "The named space denoted by $V_{pq}^k$ consists of $L_q$ functions on $[0,1)^d$ of bounded $p$-variation of order $k\\in\\mathbb N$. It generalizes the classical spaces $V_p(0,1)$ ($=V_{p\\infty}^1$) and $BV([0,1)^d)$ ($V_{1q}^1$ where $q:=\\frac d{d-1}$) and closely relates to several important smoothness spaces, e.g., to Sobolev spaces over $L_p$, $BV$ and $BMO$ and to Besov spaces. The main approximation result concerns the space $V_{pq}^k$ of \\textit{smoothness} $s:=d\\left(\\frac1p-\\frac1q\\right)\\in(0,k]$. It asserts the following: Let $f\\in V_{pq}^k$ are of smoothness $s\\in(0,k]$ and $N\\in\\mathbb N$. There exist a family $\\Delta_N$ of $N$ dyadic subcubes of $[0,1)^d$ and a piecewise polynomial $g_N$ over $\\Delta_N$ of degree $k-1$ such that \\[ \\|f-g_N\\|_q\\leqslant CN^{-s/d}|f|_{V_{pq}^k}. \\] This implies the similar results for the above mentioned smoothness spaces, in particular, solves the going back to the 1967 Birman--Solomyak paper \\cite{BS} problem of approximation of functions from $W_p^k([0,1)^d)$ in $L_q([0,1)^d)$ when ever $\\frac kd=\\frac1p-\\frac1q$ and $q<\\infty$.", "revisions": [ { "version": "v1", "updated": "2015-11-12T17:06:33.000Z" } ], "analyses": { "subjects": [ "41A46", "41A15" ], "keywords": [ "nonlinear piecewise polynomial approximation", "main approximation result concerns", "multivariate", "important smoothness spaces", "besov spaces" ], "note": { "typesetting": "TeX", "pages": 37, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv151103971B" } } }