{ "id": "1511.03746", "version": "v1", "published": "2015-11-12T01:17:33.000Z", "updated": "2015-11-12T01:17:33.000Z", "title": "Helicity is the only invariant of incompressible flows whose derivative is continuous in $C^1$-topology", "authors": [ "Elena A. Kudryavtseva" ], "comment": "5 pages", "categories": [ "math.DS", "math-ph", "math.DG", "math.MP" ], "abstract": "Let $Q$ be a smooth compact orientable 3--manifold with smooth boundary $\\partial Q$. Let $\\mathcal{B}$ be the set of exact 2--forms $B\\in\\Omega^2(Q)$ such that $j_{\\partial Q}^*B=0$, where $j_{\\partial Q}:{\\partial Q}\\to Q$ is the inclusion map. The group $\\mathcal{D}=\\mathrm{Diff}_0(Q)$ of self-diffeomorphisms of $Q$ isotopic to the identity acts on the set $\\mathcal{B}$ by $\\mathcal{D}\\times\\mathcal{B}\\to\\mathcal{B}$, $(h,B)\\mapsto h^*B$. Let $\\mathcal{B}^\\circ$ be the set of 2--forms $B\\in\\mathcal{B}$ without zeros. We prove that every $\\mathcal{D}$--invariant functional $I:\\mathcal{B}^\\circ\\to\\mathbb{R}$ having a regular and continuous derivative with respect to the $C^1$--topology can be locally (and, if $Q=M\\times S^1$ with $\\partial Q\\ne\\varnothing$, globally on the set of all 2--forms $B\\in\\mathcal{B}^\\circ$ admitting a cross-section isotopic to $M\\times\\{*\\}$) expressed in terms of the helicity.", "revisions": [ { "version": "v1", "updated": "2015-11-12T01:17:33.000Z" } ], "analyses": { "subjects": [ "35Q35", "37A20", "37C15", "53C65", "53C80" ], "keywords": [ "incompressible flows", "derivative", "continuous", "smooth boundary", "cross-section isotopic" ], "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv151103746K" } } }