{ "id": "1511.03743", "version": "v1", "published": "2015-11-12T01:07:54.000Z", "updated": "2015-11-12T01:07:54.000Z", "title": "Sums of sets of lattice points and unimodular coverings of polytopes", "authors": [ "Melvyn B. Nathanson" ], "comment": "4 pages", "categories": [ "math.NT", "math.CO" ], "abstract": "If $P$ is a lattice polytope (that is, the convex hull of a finite set of lattice points in $\\mathbf{R}^n$), then every sum of $h$ lattice points in $P$ is a lattice point in the $h$-fold sumset $hP$. However, a lattice point in the $h$-fold sumset $hP$ is not necessarily the sum of $h$ lattice points in $P$. It is proved that if the polytope $P$ is a union of unimodular simplices, then every lattice point in the $h$-fold sumset $hP$ is the sum of $h$ lattice points in $P$.", "revisions": [ { "version": "v1", "updated": "2015-11-12T01:07:54.000Z" } ], "analyses": { "subjects": [ "11B13", "11P21", "52A10", "52B20", "52C05" ], "keywords": [ "lattice point", "unimodular coverings", "fold sumset", "lattice polytope", "finite set" ], "note": { "typesetting": "TeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv151103743N" } } }