{ "id": "1511.03596", "version": "v1", "published": "2015-11-11T18:26:43.000Z", "updated": "2015-11-11T18:26:43.000Z", "title": "Optimizing the first eigenvalue of some quasilinear operators with respect to the boundary conditions", "authors": [ "Francesco Della Pietra", "Nunzia Gavitone", "Hynek Kovarik" ], "categories": [ "math.AP" ], "abstract": "We consider a class of quasilinear operators on a bounded domain $\\Omega\\subset \\mathbb R^n$ and address the question of optimizing the first eigenvalue with respect to the boundary conditions, which are of the Robin-type. We describe the optimizing boundary conditions and establish upper and lower bounds on the respective maximal and minimal eigenvalue.", "revisions": [ { "version": "v1", "updated": "2015-11-11T18:26:43.000Z" } ], "analyses": { "subjects": [ "35P15", "35P30", "35J60" ], "keywords": [ "quasilinear operators", "first eigenvalue", "lower bounds", "optimizing boundary conditions", "minimal eigenvalue" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }