{ "id": "1511.03188", "version": "v1", "published": "2015-11-10T17:10:18.000Z", "updated": "2015-11-10T17:10:18.000Z", "title": "Pointwise estimates of solutions to semilinear elliptic equations and inequalities", "authors": [ "Alexander Grigor'yan", "Igor Verbitsky" ], "comment": "32 pages, 1 figure", "categories": [ "math.AP" ], "abstract": "We obtain sharp pointwise estimates for positive solutions to the equation $-Lu+Vu^q=f$, where $L$ is an elliptic operator in divergence form, $q\\in\\mathbb{R}\\setminus \\{0\\}$, $f\\geq 0$ and $V$ is a function that may change sign, in a domain $\\Omega$ in $\\mathbb{R}^{n}$, or in a weighted Riemannian manifold.", "revisions": [ { "version": "v1", "updated": "2015-11-10T17:10:18.000Z" } ], "analyses": { "subjects": [ "35J61", "58J05" ], "keywords": [ "semilinear elliptic equations", "inequalities", "sharp pointwise estimates", "weighted riemannian manifold", "elliptic operator" ], "note": { "typesetting": "TeX", "pages": 32, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv151103188G" } } }