{ "id": "1511.02568", "version": "v1", "published": "2015-11-09T05:06:55.000Z", "updated": "2015-11-09T05:06:55.000Z", "title": "A rigidity theorem of $ΞΎ$-submanifolds in $\\mathbb{C}^{2}$", "authors": [ "Xingxiao Li", "Xiufen Chang" ], "comment": "Submitted", "categories": [ "math.DG" ], "abstract": "In this paper, we first introduce the concept of $\\xi $-submanifold which is a natural generalization of self-shrinkers for the mean curvature flow and also an extension of $\\lambda$-hypersurfaces to the higher codimension. Then, as the main result, we prove a rigidity theorem for Lagrangian $\\xi $-submanifold in the complex $2$-plane $\\bbc^2$.", "revisions": [ { "version": "v1", "updated": "2015-11-09T05:06:55.000Z" } ], "analyses": { "subjects": [ "53A30", "53B25" ], "keywords": [ "rigidity theorem", "submanifold", "mean curvature flow", "natural generalization", "higher codimension" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }