{ "id": "1511.02558", "version": "v1", "published": "2015-11-09T03:31:21.000Z", "updated": "2015-11-09T03:31:21.000Z", "title": "The Log-Behavior of $\\sqrt[n]{p(n)}$ and $\\sqrt[n]{p(n)/n}$", "authors": [ "William Y. C. Chen", "Ken Y. Zheng" ], "comment": "19 pages", "categories": [ "math.CO", "math.NT" ], "abstract": "Let $p(n)$ denote the partition function. Desalvo and Pak proved the log-concavity of $p(n)$ for $n>25$ and the inequality $\\frac{p(n-1)}{p(n)}\\left(1+\\frac{1}{n}\\right)>\\frac{p(n)}{p(n+1)}$ for $n>1$. Let $r(n)=\\sqrt[n]{p(n)/n}$ and $\\Delta$ be the difference operator respect to $n$. Desalvo and Pak pointed out that their approach to proving the log-concavity of $p(n)$ may be employed to prove a conjecture of Sun on the log-convexity of $\\{r(n)\\}_{n\\geq 61}$, as long as one finds an appropriate estimate of $\\Delta^2 \\log r(n-1)$. In this paper, we obtain a lower bound for $\\Delta^2\\log r(n-1)$, leading to a proof of this conjecture. From the log-convexity of $\\{r(n)\\}_{n\\geq61}$ and $\\{\\sqrt[n]{n}\\}_{n\\geq4}$, we are led to a proof of another conjecture of Sun on the log-convexity of $\\{\\sqrt[n]{p(n)}\\}_{n\\geq27}$. Furthermore, we show that $\\lim\\limits_{n \\rightarrow +\\infty}n^{\\frac{5}{2}}\\Delta^2\\log\\sqrt[n]{p(n)}=3\\pi/\\sqrt{24}$. Finally, by finding an upper bound of $\\Delta^2 \\log\\sqrt[n-1]{p(n-1)}$, we prove an inequality on the ratio $\\frac{\\sqrt[n-1]{p(n-1)}}{\\sqrt[n]{p(n)}}$ analogous to the above inequality on the ratio $\\frac{p(n-1)}{p(n)}$.", "revisions": [ { "version": "v1", "updated": "2015-11-09T03:31:21.000Z" } ], "analyses": { "subjects": [ "05A20" ], "keywords": [ "log-behavior", "conjecture", "log-convexity", "difference operator respect", "inequality" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable" } } }