{ "id": "1511.02478", "version": "v1", "published": "2015-11-08T12:52:25.000Z", "updated": "2015-11-08T12:52:25.000Z", "title": "On the number of ramified primes in specializations of function fields over $\\mathbb{Q}$", "authors": [ "Lior Bary-Soroker", "François Legrand" ], "categories": [ "math.NT" ], "abstract": "We study the number of ramified prime numbers in finite Galois extensions of $\\mathbb{Q}$ obtained by specializing a finite Galois extension of $\\mathbb{Q}(T)$. Our main result is a central limit theorem for this number. We also give some Galois theoretical applications.", "revisions": [ { "version": "v1", "updated": "2015-11-08T12:52:25.000Z" } ], "analyses": { "keywords": [ "function fields", "finite galois extension", "specializations", "central limit theorem", "ramified prime numbers" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv151102478B" } } }