{ "id": "1511.02388", "version": "v1", "published": "2015-11-07T19:07:27.000Z", "updated": "2015-11-07T19:07:27.000Z", "title": "Orders of reductions of elliptic curves with many and few prime factors", "authors": [ "Lee Troupe" ], "comment": "15 pages", "categories": [ "math.NT" ], "abstract": "In this paper, we investigate extreme values of $\\omega(E(\\mathbb{F}_p))$, where $E/\\mathbb{Q}$ is an elliptic curve with complex multiplication and $\\omega$ is the number-of-distinct-prime-divisors function. For fixed $\\gamma > 1$, we prove that \\[ \\#\\{p \\leq x : \\omega(E(\\mathbb{F}_p)) > \\gamma\\log\\log x\\} = \\frac{x}{(\\log x)^{2 + \\gamma\\log\\gamma - \\gamma + o(1)}}. \\] The same result holds for the quantity $\\#\\{p \\leq x : \\omega(E(\\mathbb{F}_p)) < \\gamma\\log\\log x\\}$ when $0 < \\gamma < 1$. The argument is worked out in detail for the curve $E : y^2 = x^3 - x$, and we discuss how the method can be adapted for other CM elliptic curves.", "revisions": [ { "version": "v1", "updated": "2015-11-07T19:07:27.000Z" } ], "analyses": { "subjects": [ "11N37", "11N36", "11G05" ], "keywords": [ "prime factors", "reductions", "cm elliptic curves", "complex multiplication", "number-of-distinct-prime-divisors function" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv151102388T" } } }