{ "id": "1511.02374", "version": "v1", "published": "2015-11-07T16:42:57.000Z", "updated": "2015-11-07T16:42:57.000Z", "title": "On Schur p-groups of odd order", "authors": [ "Grigory Ryabov" ], "comment": "19 pages", "categories": [ "math.GR", "math.CO" ], "abstract": "A finite group $G$ is called a Schur group if any $S$-ring over $G$ is associated in a natural way with a subgroup of $Sym(G)$ that contains all right translations. We prove that the groups $\\mathbb{Z}_3\\times \\mathbb{Z}_{3^n}$, where $n\\geq 1$, are Schur. Modulo previously obtained results, it follows that every noncyclic Schur $p$-group, where $p$ is an odd prime, is isomorphic to $\\mathbb{Z}_3\\times \\mathbb{Z}_3 \\times \\mathbb{Z}_3$ or $\\mathbb{Z}_3\\times \\mathbb{Z}_{3^n}$, $n\\geq 1$ .", "revisions": [ { "version": "v1", "updated": "2015-11-07T16:42:57.000Z" } ], "analyses": { "subjects": [ "05E30", "20B30" ], "keywords": [ "odd order", "schur p-groups", "schur group", "natural way", "finite group" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv151102374R" } } }