{ "id": "1511.02329", "version": "v1", "published": "2015-11-07T09:17:34.000Z", "updated": "2015-11-07T09:17:34.000Z", "title": "A note on absorption semigroups", "authors": [ "Jochen Glück" ], "comment": "7 pages", "categories": [ "math.FA" ], "abstract": "Let $A$ be a bounded linear operator and $P$ a bounded linear projection on a Banach space $X$. We show that the operator semigroup $(e^{t(A-kP)})_{t \\ge 0}$ converges to a semigroup on a subspace of $X$ as $k \\to \\infty$ and we compute the limit semigroup.", "revisions": [ { "version": "v1", "updated": "2015-11-07T09:17:34.000Z" } ], "analyses": { "subjects": [ "47D06", "47A10" ], "keywords": [ "absorption semigroups", "bounded linear projection", "limit semigroup", "bounded linear operator" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv151102329G" } } }