{ "id": "1511.02269", "version": "v1", "published": "2015-11-07T00:22:44.000Z", "updated": "2015-11-07T00:22:44.000Z", "title": "Boundedness for fractional Hardy-type operator on variable exponent Herz-Morrey spaces", "authors": [ "Jiang-Long Wu", "Wen-Jiao Zhao" ], "comment": "14 pages, Kyoto J. Math.(In Press). arXiv admin note: substantial text overlap with arXiv:1404.1633", "categories": [ "math.FA" ], "abstract": "In this paper, the fractional Hardy-type operator of variable order $\\beta(x)$ is shown to be bounded from the variable exponent Herz-Morrey spaces $M\\dot{K}_{p_{_{1}},q_{_{1}}(\\cdot)}^{\\alpha(\\cdot),\\lambda}(\\R^{n})$ into the weighted space $M\\dot{K}_{p_{_{2}},q_{_{2}}(\\cdot)}^{\\alpha(\\cdot),\\lambda}(\\R^{n},\\omega)$, where $\\alpha(x)\\in L^{\\infty}(\\mathbb{R}^{n})$ be log-H\\\"older continuous both at the origin and at infinity, $\\omega=(1+|x|)^{-\\gamma(x)}$ with some $\\gamma(x)>0$ and $ 1/q_{_{1}}(x)-1/q_{_{2}}(x)=\\beta(x)/n$ when $q_{_{1}}(x)$ is not necessarily constant at infinity.", "revisions": [ { "version": "v1", "updated": "2015-11-07T00:22:44.000Z" } ], "analyses": { "subjects": [ "42B20", "47B38" ], "keywords": [ "variable exponent herz-morrey spaces", "fractional hardy-type operator", "boundedness", "variable order", "weighted space" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv151102269W" } } }