{ "id": "1511.02212", "version": "v1", "published": "2015-11-06T19:57:21.000Z", "updated": "2015-11-06T19:57:21.000Z", "title": "How Large is $A_g(\\mathbb{F}_q)$?", "authors": [ "Michael Lipnowski", "Jacob Tsimerman" ], "comment": "38 pages", "categories": [ "math.NT" ], "abstract": "Let $B(g,p)$ denote the number of isomorphism classes of $g$-dimensional abelian varieties over the finite field of size $p.$ Let $A(g,p)$ denote the number of isomorphism classes of principally polarized $g$ dimensional abelian varieties over the finite field of size $p.$ We derive upper bounds for $B(g,p)$ and lower bounds for $A(g,p)$ for $p$ fixed and $g$ increasing. The extremely large gap between the lower bound for $A(g,p)$ and the upper bound $B(g,p)$ implies some statistically counterintuitive behavior for abelian varieties of large dimension over a fixed finite field.", "revisions": [ { "version": "v1", "updated": "2015-11-06T19:57:21.000Z" } ], "analyses": { "keywords": [ "dimensional abelian varieties", "isomorphism classes", "lower bound", "fixed finite field", "large dimension" ], "note": { "typesetting": "TeX", "pages": 38, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv151102212L" } } }