{ "id": "1511.01962", "version": "v1", "published": "2015-11-06T00:51:58.000Z", "updated": "2015-11-06T00:51:58.000Z", "title": "Quantum Walks on Generalized Quadrangles", "authors": [ "Chris Godsil", "Krystal Guo", "Tor G. J. Myklebust" ], "comment": "5 pages", "categories": [ "math.CO", "quant-ph" ], "abstract": "We study the transition matrix of a quantum walk on strongly regular graphs. It is proposed by Emms, Hancock, Severini and Wilson in 2006, that the spectrum of $S^+(U^3)$, a matrix based on the amplitudes of walks in the quantum walk, distinguishes strongly regular graphs. We probabilistically compute the spectrum of the line intersection graphs of two non-isomorphic generalized quadrangles of order $(5^2,5)$ under this matrix and thus provide strongly regular counter-examples to the conjecture.", "revisions": [ { "version": "v1", "updated": "2015-11-06T00:51:58.000Z" } ], "analyses": { "subjects": [ "05C50", "81P68" ], "keywords": [ "quantum walk", "line intersection graphs", "distinguishes strongly regular graphs", "transition matrix", "non-isomorphic generalized quadrangles" ], "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv151101962G" } } }