{ "id": "1511.01522", "version": "v1", "published": "2015-11-04T21:40:25.000Z", "updated": "2015-11-04T21:40:25.000Z", "title": "The Fine Structure of Herman Rings", "authors": [ "NĂºria Fagella", "Christian Henriksen" ], "comment": "17 pages, 3 figures", "categories": [ "math.DS" ], "abstract": "We study the geometric structure of the boundary of Herman rings in a model family of Blaschke products of degree 3. Shishikura's quasiconformal surgery relates the Herman ring to the Siegel disk of a quadratic polynomial. By studying the regularity properties of the maps involved, we can transfer McMullen's results on the fine local geometry of Siegel disks to the Herman ring setting.", "revisions": [ { "version": "v1", "updated": "2015-11-04T21:40:25.000Z" } ], "analyses": { "subjects": [ "37F10", "30D20" ], "keywords": [ "herman ring", "fine structure", "siegel disk", "shishikuras quasiconformal surgery relates", "fine local geometry" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable" } } }