{ "id": "1511.01081", "version": "v1", "published": "2015-11-03T20:48:53.000Z", "updated": "2015-11-03T20:48:53.000Z", "title": "A low-dimensional model predicting geometry-dependent dynamics of large-scale coherent structures in turbulence", "authors": [ "Kunlun Bai", "Dandan Ji", "Eric Brown" ], "comment": "5 pages, 5 figures", "categories": [ "physics.flu-dyn" ], "abstract": "We test the ability of a general low-dimensional model for turbulence to predict geometry-dependent dynamics of large-scale coherent structures, such as convection rolls. The model consists of stochastic ordinary differential equations, which are derived as a function of boundary geometry from the Navier-Stokes equations (Brown and Ahlers 2008). We test the model using Rayleigh-B\\'enard convection experiments in a cubic container. The model predicts a new mode in which the alignment of a convection roll switches between diagonals. We observe this mode with a measured switching rate within 30% of the prediction.", "revisions": [ { "version": "v1", "updated": "2015-11-03T20:48:53.000Z" } ], "analyses": { "keywords": [ "low-dimensional model predicting geometry-dependent dynamics", "large-scale coherent structures", "turbulence", "stochastic ordinary differential equations", "convection roll" ], "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable" } } }