{ "id": "1511.01076", "version": "v1", "published": "2015-11-03T20:45:32.000Z", "updated": "2015-11-03T20:45:32.000Z", "title": "An Erdős--Hajnal analogue for permutation classes", "authors": [ "Vincent Vatter" ], "categories": [ "math.CO" ], "abstract": "Let $\\mathcal{C}$ be a permutation class that does not contain all layered permutations or all colayered permutations. We prove that there is a constant $c$ such that every permutation in $\\mathcal{C}$ of length $n$ contains a monotone subsequence of length $cn$.", "revisions": [ { "version": "v1", "updated": "2015-11-03T20:45:32.000Z" } ], "analyses": { "keywords": [ "permutation class", "erdős-hajnal analogue", "monotone subsequence" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv151101076V" } } }