{ "id": "1511.00194", "version": "v1", "published": "2015-11-01T00:51:31.000Z", "updated": "2015-11-01T00:51:31.000Z", "title": "Finite ramification for preimage fields of postcritically finite morphisms", "authors": [ "Andrew Bridy", "Patrick Ingram", "Rafe Jones", "Jamie Juul", "Alon Levy", "Michelle Manes", "Simon Rubinstein-Salzedo", "Joseph H. Silverman" ], "categories": [ "math.NT" ], "abstract": "Given a finite endomorphism $\\varphi$ of a variety $X$ defined over the field of fractions $K$ of a Dedekind domain, we study the extension $K(\\varphi^{-\\infty}(\\alpha)) : = \\bigcup_{n \\geq 1} K(\\varphi^{-n}(\\alpha))$ generated by the preimages of $\\alpha$ under all iterates of $\\varphi$. In particular when $\\varphi$ is post-critically finite, i.e., there exists a non-empty, Zariski-open $W \\subseteq X$ such that $\\varphi^{-1}(W) \\subseteq W$ and $\\varphi : W \\to X$ is \\'etale, we prove that $K(\\varphi^{-\\infty}(\\alpha))$ is ramified over only finitely many primes of $K$. This provides a large supply of infinite extensions with restricted ramification, and generalizes results of Aitken-Hajir-Maire in the case $X = \\mathbb{A}^1$ and Cullinan-Hajir, Jones-Manes in the case $X = \\mathbb{P}^1$. Moreover, we conjecture that this finite ramification condition characterizes post-critically finite morphisms, and we give an entirely new result showing this for $X = \\mathbb{P}^1$. The proof relies on Faltings' theorem and a local argument.", "revisions": [ { "version": "v1", "updated": "2015-11-01T00:51:31.000Z" } ], "analyses": { "keywords": [ "postcritically finite morphisms", "preimage fields", "ramification condition characterizes post-critically finite", "condition characterizes post-critically finite morphisms", "finite ramification condition characterizes" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv151100194B" } } }