{ "id": "1511.00024", "version": "v1", "published": "2015-10-30T20:37:29.000Z", "updated": "2015-10-30T20:37:29.000Z", "title": "Extensions for Generalized Current Algebras", "authors": [ "Brian D. Boe", "Christopher M. Drupieski", "Tiago R. Macedo", "Daniel K. Nakano" ], "categories": [ "math.RT" ], "abstract": "Given a complex semisimple Lie algebra ${\\mathfrak g}$ and a commutative ${\\mathbb C}$-algebra $A$, let ${\\mathfrak g}[A] = {\\mathfrak g} \\otimes A$ be the corresponding generalized current algebra. In this paper we explore questions involving the computation and finite-dimensionality of extension groups for finite-dimensional ${\\mathfrak g}[A]$-modules. Formulas for computing $\\operatorname{Ext}^{1}$ and $\\operatorname{Ext}^{2}$ between simple ${\\mathfrak g}[A]$-modules are presented. As an application of these methods and of the use of the first cyclic homology, we completely describe $\\operatorname{Ext}^{2}_{{\\mathfrak g}[t]}(L_{1},L_{2})$ for ${\\mathfrak g}=\\mathfrak{sl}_{2}$ when $L_{1}$ and $L_{2}$ are simple ${\\mathfrak g}[t]$-modules that are each given by the tensor product of two evaluation modules.", "revisions": [ { "version": "v1", "updated": "2015-10-30T20:37:29.000Z" } ], "analyses": { "subjects": [ "17B55", "17B65" ], "keywords": [ "complex semisimple lie algebra", "first cyclic homology", "extension groups", "evaluation modules", "corresponding generalized current algebra" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }