{ "id": "1510.08290", "version": "v1", "published": "2015-10-28T12:46:57.000Z", "updated": "2015-10-28T12:46:57.000Z", "title": "The corrector in stochastic homogenization: Near-optimal rates with optimal stochastic integrability", "authors": [ "Antoine Gloria", "Felix Otto" ], "comment": "55 pages", "categories": [ "math.AP", "math.PR" ], "abstract": "We consider uniformly elliptic coefficient fields that are randomly distributed according to a stationary ensemble of a finite range of dependence. We show that the gradient $\\nabla\\phi$ of the corrector $\\phi$, when spatially averaged over a scale $R\\gg 1$ decays like $R^{-\\alpha}$ for any $\\alpha<\\frac{d}{2}$. We establish these rates on the level of Gaussian bounds in terms of the stochastic integrability.", "revisions": [ { "version": "v1", "updated": "2015-10-28T12:46:57.000Z" } ], "analyses": { "subjects": [ "35J15", "35K10", "35B27", "60H25", "60F99" ], "keywords": [ "optimal stochastic integrability", "near-optimal rates", "stochastic homogenization", "uniformly elliptic coefficient fields", "finite range" ], "note": { "typesetting": "TeX", "pages": 55, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv151008290G" } } }