{ "id": "1510.08132", "version": "v1", "published": "2015-10-27T23:41:35.000Z", "updated": "2015-10-27T23:41:35.000Z", "title": "On mapping theorems for numerical range", "authors": [ "Hubert Klaja", "Javad Mashreghi", "Thomas Ransford" ], "categories": [ "math.FA" ], "abstract": "Let $T$ be an operator on a Hilbert space $H$ with numerical radius $w(T)\\le1$. According to a theorem of Berger and Stampfli, if $f$ is a function in the disk algebra such that $f(0)=0$, then $w(f(T))\\le\\|f\\|_\\infty$. We give a new and elementary proof of this result using finite Blaschke products. A well-known result relating numerical radius and norm says $\\|T\\| \\leq 2w(T)$. We obtain a local improvement of this estimate, namely, if $w(T)\\le1$ then \\[ \\|Tx\\|^2\\le 2+2\\sqrt{1-|\\langle Tx,x\\rangle|^2} \\qquad(x\\in H,~\\|x\\|\\le1). \\] Using this refinement, we give a simplified proof of Drury's teardrop theorem, which extends the Berger-Stampfli theorem to the case $f(0)\\ne0$.", "revisions": [ { "version": "v1", "updated": "2015-10-27T23:41:35.000Z" } ], "analyses": { "keywords": [ "numerical range", "mapping theorems", "finite blaschke products", "well-known result relating numerical radius", "drurys teardrop theorem" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }