{ "id": "1510.07989", "version": "v1", "published": "2015-10-26T15:35:00.000Z", "updated": "2015-10-26T15:35:00.000Z", "title": "Generalized P-Reducible $(α, β)$-Metrics with Vanishing S-curvature", "authors": [ "A. Tayebi", "H. Sadeghi" ], "comment": "The main result holds for $(\\alpha, \\beta)$-Metrics with isotropic S-curvature!", "journal": "Annales Polonici Mathematici, 114(1) (2015), 67-79", "categories": [ "math.DG" ], "abstract": "In this paper, we study one of the open problems in Finsler geometry which presented by Matsumoto-Shimada about the existence of P-reducible metric which is not C-reducible. For this aim, we study a class of Finsler metrics called generalized P-reducible metrics that contains the class of P-reducible metrics. We prove that every generalized P-reducible $(\\alpha, \\beta)$-metric with vanishing S-curvature reduces to a Berwald metric or C-reducible metric. It results that there is not any concrete P-reducible $(\\alpha,\\beta)$-metric with vanishing S-curvature.", "revisions": [ { "version": "v1", "updated": "2015-10-26T15:35:00.000Z" } ], "analyses": { "subjects": [ "53C60", "53C25" ], "keywords": [ "open problems", "berwald metric", "finsler geometry", "vanishing s-curvature reduces", "finsler metrics" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv151007989T" } } }