{ "id": "1510.07724", "version": "v1", "published": "2015-10-26T23:51:18.000Z", "updated": "2015-10-26T23:51:18.000Z", "title": "Refined and Microlocal Kakeya-Nikodym Bounds of Eigenfunctions in Higher Dimensions", "authors": [ "Matthew D. Blair", "Christopher D. Sogge" ], "comment": "26 pages", "categories": [ "math.AP", "math.CA" ], "abstract": "We prove a Kakeya-Nikodym bound on eigenfunctions and quasimodes, which sharpens a result of the authors and extends it to higher dimensions. As in the prior work, the key intermediate step is to prove a microlocal version of these estimates, which involves a phase space decomposition of these modes which is essentially invariant under the bicharacteristic/geodesic flow. In a companion paper, it will be seen that these sharpened estimates yield improved $L^q(M)$ bounds on eigenfunctions in the presence of nonpositive curvature when $2 < q < \\frac{2(d+1)}{d-1}$.", "revisions": [ { "version": "v1", "updated": "2015-10-26T23:51:18.000Z" } ], "analyses": { "subjects": [ "35P99", "42B37" ], "keywords": [ "microlocal kakeya-nikodym bounds", "higher dimensions", "eigenfunctions", "phase space decomposition", "sharpened estimates yield" ], "note": { "typesetting": "TeX", "pages": 26, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv151007724B" } } }