{ "id": "1510.07715", "version": "v1", "published": "2015-10-26T23:02:03.000Z", "updated": "2015-10-26T23:02:03.000Z", "title": "Fintushel--Stern knot surgery in torus bundles", "authors": [ "Yi Ni" ], "comment": "16 pages", "categories": [ "math.GT", "math.SG" ], "abstract": "Suppose that $X$ is a torus bundle over a closed surface with homologically essential fibers. Let $X_K$ be the manifold obtained by Fintushel--Stern knot surgery on a fiber using a knot $K\\subset S^3$. We prove that $X_K$ has a symplectic structure if and only if $K$ is a fibered knot. The proof uses Seiberg--Witten theory and a result of Friedl--Vidussi on twisted Alexander polynomials.", "revisions": [ { "version": "v1", "updated": "2015-10-26T23:02:03.000Z" } ], "analyses": { "subjects": [ "57R17", "57M50", "57M10" ], "keywords": [ "fintushel-stern knot surgery", "torus bundle", "symplectic structure", "seiberg-witten theory", "twisted alexander polynomials" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv151007715N" } } }