{ "id": "1510.07284", "version": "v1", "published": "2015-10-25T18:49:20.000Z", "updated": "2015-10-25T18:49:20.000Z", "title": "Random version of Dvoretzky's theorem in $\\ell_p^n$", "authors": [ "Grigoris Paouris", "Petros Valettas", "Joel Zinn" ], "comment": "45 pages", "categories": [ "math.FA" ], "abstract": "We study the dependence on $\\varepsilon$ in the critical dimension $k(n, p, \\varepsilon)$ that one can find random sections of the $\\ell_p^n$-ball which are $(1+\\varepsilon)$-spherical. For any fixed $n$ we give lower estimates for $k(n, p, \\varepsilon)$ for all eligible values $p$ and $\\varepsilon$, which agree with the sharp estimates for the extreme values $p = 1$ and $p = \\infty$. In order to do so, we provide bounds for the gaussian concentration of the $\\ell_p$-norm.", "revisions": [ { "version": "v1", "updated": "2015-10-25T18:49:20.000Z" } ], "analyses": { "subjects": [ "46B06", "46B07", "46B09" ], "keywords": [ "dvoretzkys theorem", "random version", "gaussian concentration", "extreme values", "sharp estimates" ], "note": { "typesetting": "TeX", "pages": 45, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv151007284P" } } }