{ "id": "1510.07232", "version": "v1", "published": "2015-10-25T11:23:42.000Z", "updated": "2015-10-25T11:23:42.000Z", "title": "Algebraic dimension of twistor spaces whose fundamental system is a pencil", "authors": [ "Nobuhiro Honda", "Bernd Kreussler" ], "comment": "22 pages, 1 figure", "categories": [ "math.DG", "math.AG" ], "abstract": "We show that the algebraic dimension of a twistor space over n#CP^2 cannot be two if n>4 and the fundamental system (i.e. the linear system associated to the half-anti-canonical bundle, which is available on any twistor space) is a pencil. This means that if the algebraic dimension of a twistor space on n#CP^2, n>4, is two, then the fundamental system either is empty or consists of a single member. The existence problem for a twistor space on n#CP^2 with algebraic dimension two is open for n>4.", "revisions": [ { "version": "v1", "updated": "2015-10-25T11:23:42.000Z" } ], "analyses": { "keywords": [ "twistor space", "algebraic dimension", "fundamental system", "linear system", "single member" ], "note": { "typesetting": "TeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv151007232H" } } }