{ "id": "1510.07231", "version": "v1", "published": "2015-10-25T10:37:11.000Z", "updated": "2015-10-25T10:37:11.000Z", "title": "An autonomous Kirchhoff-type equation with general nonlinearity in $\\mathbb{R}^N$", "authors": [ "Sheng-Sen Lu" ], "comment": "14 pages", "categories": [ "math.AP" ], "abstract": "We consider the following autonomous Kirchhoff-type equation $$-\\left(a+b\\int_{\\mathbb{R}^N}|\\nabla{u}|^2\\right)\\Delta{u}= f(u),~~~~u\\in H^1(\\mathbb{R}^N),$$ where $a\\geq0,b>0$ are constants and $N\\geq1$. Under general assumptions on the nonlinearity $f$, we establish the existence results of a ground state and multiple solutions for $N\\geq2$, and obtain a nontrivial solution and its uniqueness, up to a translation and up to a sign, for $N=1$. The proofs are mainly based on a rescaling argument and a new description of the critical values in association with the level argument.", "revisions": [ { "version": "v1", "updated": "2015-10-25T10:37:11.000Z" } ], "analyses": { "subjects": [ "35J15", "35J60" ], "keywords": [ "autonomous kirchhoff-type equation", "general nonlinearity", "general assumptions", "nontrivial solution", "existence results" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv151007231L" } } }