{ "id": "1510.07196", "version": "v1", "published": "2015-10-25T01:11:29.000Z", "updated": "2015-10-25T01:11:29.000Z", "title": "The Hausdorff dimension of metric spaces definable in o-minimal expansions of the real field", "authors": [ "Jana Maříková", "Erik Walsberg" ], "categories": [ "math.LO" ], "abstract": "Let $R$ be an o-minimal expansion of the real field. We show that the Hausdorff dimension of an $R$-definable metric space is an $R$-definable function of the parameters defining the metric space. We also show that the Hausdorff dimension of an $R$-definable metric space is an element of the field of powers of $R$. The proof uses a basic topological dichotomy for definable metric spaces due to the second author, and the work of the first author and Shiota on measure theory over nonarchimedean o-minimal structures.", "revisions": [ { "version": "v1", "updated": "2015-10-25T01:11:29.000Z" } ], "analyses": { "keywords": [ "hausdorff dimension", "metric spaces definable", "o-minimal expansion", "real field", "definable metric space" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv151007196M" } } }