{ "id": "1510.07141", "version": "v1", "published": "2015-10-24T12:59:58.000Z", "updated": "2015-10-24T12:59:58.000Z", "title": "A note on Grid Homology in lens spaces: $\\mathbb{Z}$ coefficients and computations", "authors": [ "Daniele Celoria" ], "comment": "27 pages, 23 figures", "categories": [ "math.GT" ], "abstract": "We present a combinatorial proof for the existence of the sign refined Grid Homology in lens spaces, and a self contained proof that $\\partial_\\mathbb{Z}^2 = 0$. We also present a Sage program that computes $\\widehat{GH} (L(p,q),K;\\mathbb{Z})$, and provide empirical evidence supporting the absence of torsion in these groups.", "revisions": [ { "version": "v1", "updated": "2015-10-24T12:59:58.000Z" } ], "analyses": { "keywords": [ "lens spaces", "coefficients", "computations", "sign refined grid homology", "combinatorial proof" ], "note": { "typesetting": "TeX", "pages": 27, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv151007141C" } } }