{ "id": "1510.06519", "version": "v1", "published": "2015-10-22T08:26:57.000Z", "updated": "2015-10-22T08:26:57.000Z", "title": "Linear relations among double zeta values in positive characteristic", "authors": [ "Chieh-Yu Chang" ], "comment": "30 pages", "categories": [ "math.NT" ], "abstract": "The study of this paper is inspired by the conjecture of Zagier on the explicit dimension formula for the space of the same weight double zeta values in terms of the dimension of cusp forms for SL_{2}(Z). Our main result is to devise an effective criterion for computing the dimension of the same weight double zeta values over a rational function field F_{q}(theta) in positive characteristic. Contrary to the Zagier's conjecture, the analogue of Zagier's conjectural dimension provides a lower bound for the dimension of the double zeta values when the weight is $A$-even.", "revisions": [ { "version": "v1", "updated": "2015-10-22T08:26:57.000Z" } ], "analyses": { "keywords": [ "positive characteristic", "linear relations", "weight double zeta values", "explicit dimension formula", "rational function field" ], "note": { "typesetting": "TeX", "pages": 30, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv151006519C" } } }