{ "id": "1510.06481", "version": "v1", "published": "2015-10-22T02:55:18.000Z", "updated": "2015-10-22T02:55:18.000Z", "title": "Finite Element Methods for Interface Problems: Robust Residual-Based A Posteriori Error Estimates", "authors": [ "Zhiqiang Cai", "Cuiyu He", "Shun Zhang" ], "categories": [ "math.NA" ], "abstract": "For elliptic interface problems, this paper studies residual-based a posteriori error estimations for various finite element approximations. For the conforming and the Raviart-Thomas mixed elements in two-dimension and for the Crouzeix-Raviart nonconforming and the discontinuous Galerkin elements in both two- and three-dimensions, the global reliability bounds are established with constants independent of the jump of the diffusion coefficient. Moreover, we obtain these estimates with no assumption on the distribution of the diffusion coefficient.", "revisions": [ { "version": "v1", "updated": "2015-10-22T02:55:18.000Z" } ], "analyses": { "keywords": [ "finite element methods", "posteriori error estimates", "diffusion coefficient", "elliptic interface problems", "posteriori error estimations" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv151006481C" } } }