{ "id": "1510.06390", "version": "v1", "published": "2015-10-21T19:59:15.000Z", "updated": "2015-10-21T19:59:15.000Z", "title": "Spectral statistics of sparse Erdős-Rényi graph Laplacians", "authors": [ "Jiaoyang Huang", "Benjamin Landon" ], "comment": "35 pages, 2 figures", "categories": [ "math.PR" ], "abstract": "We consider the bulk eigenvalue statistics of Laplacian matrices of large Erd\\H{o}s-R\\'enyi random graphs in the regime $p \\geq N^{\\delta}/N$ for any fixed $\\delta >0$. We prove a local law down to the optimal scale $\\eta \\gtrsim N^{-1}$ which implies that the eigenvectors are delocalized. We consider the local eigenvalue statistics and prove that both the gap statistics and averaged correlation functions coincide with the GOE in the bulk.", "revisions": [ { "version": "v1", "updated": "2015-10-21T19:59:15.000Z" } ], "analyses": { "subjects": [ "60B20", "05C80" ], "keywords": [ "sparse erdős-rényi graph laplacians", "spectral statistics", "bulk eigenvalue statistics", "local eigenvalue statistics", "averaged correlation functions coincide" ], "note": { "typesetting": "TeX", "pages": 35, "language": "en", "license": "arXiv", "status": "editable" } } }