{ "id": "1510.06291", "version": "v1", "published": "2015-10-20T01:50:16.000Z", "updated": "2015-10-20T01:50:16.000Z", "title": "Certain rational functions on the Riemann sphere with more than three branch points", "authors": [ "Ji-jian Song", "Bin Xu" ], "comment": "11 pages", "categories": [ "math.GT", "math.AG", "math.GR" ], "abstract": "Consider a collection $\\Lambda$ of partitions of a positive integer $d$ with form $$(a_1,\\cdots, a_p),\\,(b_1,\\cdots, b_q),\\,(m_1+1,1,\\cdots,1),\\cdots, (m_l+1,1,\\cdots,1),$$ where $(m_1,\\cdots, m_l)$ is a partition of $p+q-2>0$. We prove that there exists a rational function on the Riemann sphere with branch data $\\Lambda$ if and only if $\\max\\bigl(m_1,\\cdots,m_l\\bigr)$ is less than $d/{\\rm GCD}(a_1,\\cdots, a_p,b_1,\\cdots, b_q)$, which generalizes a theorem of G. Boccara in Discrete Math.(1982). As an application, we give a new class of branch data which can be realized by Belyi functions on the Riemann sphere.", "revisions": [ { "version": "v1", "updated": "2015-10-20T01:50:16.000Z" } ], "analyses": { "keywords": [ "riemann sphere", "rational function", "branch points", "branch data", "belyi functions" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv151006291S" } } }