{ "id": "1510.05672", "version": "v1", "published": "2015-10-19T20:22:21.000Z", "updated": "2015-10-19T20:22:21.000Z", "title": "Nonsingular transformations and dimension spaces", "authors": [ "Thierry Giordano", "David Handelman", "Radu B. Munteanu" ], "categories": [ "math.DS" ], "abstract": "For any adic transformation $T$ defined on the path space $X$ of an ordered Bratteli diagram, endowed with a Markov measure $\\mu$, we construct an explicit dimension space (which corresponds to a matrix values random walk on $\\mathbb{Z}$) whose Poisson boundary can be identified as a $\\mathbb{Z}$-space with the dynamical system $(X,\\mu,T)$. We give a couple of examples to show how dimension spaces can be used in the study of nonsingular transformations.", "revisions": [ { "version": "v1", "updated": "2015-10-19T20:22:21.000Z" } ], "analyses": { "keywords": [ "nonsingular transformations", "matrix values random walk", "explicit dimension space", "ordered bratteli diagram", "markov measure" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv151005672G" } } }