{ "id": "1510.04798", "version": "v1", "published": "2015-10-16T07:00:31.000Z", "updated": "2015-10-16T07:00:31.000Z", "title": "Independent random variables on Abelian groups with independent the sum and difference", "authors": [ "G. M. Feldman" ], "categories": [ "math.PR" ], "abstract": "Let X be a second countable locally compact Abelian group. Let $\\xi_1, \\xi_2$ be independent random variables with values in the group X and distributions $\\mu_1, \\mu_2$ such that the sum $\\xi_1+\\xi_2$ and the difference $\\xi_1-\\xi_2$ are independent. Assuming that the connected component of zero of the group $X$ contains a finite number elements of order 2 we describe the possible distributions $\\mu_k$.", "revisions": [ { "version": "v1", "updated": "2015-10-16T07:00:31.000Z" } ], "analyses": { "keywords": [ "independent random variables", "difference", "second countable locally compact abelian", "finite number elements", "countable locally compact abelian group" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv151004798F" } } }