{ "id": "1510.04674", "version": "v1", "published": "2015-10-15T19:28:14.000Z", "updated": "2015-10-15T19:28:14.000Z", "title": "A Boundedness Trichotomy for the Stochastic Heat Equation", "authors": [ "Le Chen", "Davar Khoshnevisan", "Kunwoo Kim" ], "comment": "16 pages", "categories": [ "math.PR" ], "abstract": "We consider the stochastic heat equation with a multiplicative white noise forcing term under standard \"intermitency conditions.\" The main finding of this paper is that, under mild regularity hypotheses, the a.s.-boundedness of the solution $x\\mapsto u(t\\,,x)$ can be characterized generically by the decay rate, at $\\pm\\infty$, of the initial function $u_0$. More specifically, we prove that there are 3 generic boundedness regimes, depending on the numerical value of $\\Lambda:= \\lim_{|x|\\to\\infty} |\\log u_0(x)|/(\\log|x|)^{2/3}$.", "revisions": [ { "version": "v1", "updated": "2015-10-15T19:28:14.000Z" } ], "analyses": { "subjects": [ "60H15", "35R60" ], "keywords": [ "stochastic heat equation", "boundedness trichotomy", "multiplicative white noise forcing term", "mild regularity hypotheses", "generic boundedness regimes" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv151004674C" } } }