{ "id": "1510.04613", "version": "v1", "published": "2015-10-15T16:35:19.000Z", "updated": "2015-10-15T16:35:19.000Z", "title": "On the global existence and blowup of smooth solutions of 3-D compressible Euler equations with time-depending damping", "authors": [ "Fei Hou", "Ingo Witt", "Huicheng Yin" ], "comment": "28 pages", "categories": [ "math.AP" ], "abstract": "In this paper, we are concerned with the global existence and blowup of smooth solutions of the 3-D compressible Euler equation with time-depending damping $$ \\partial_t\\rho+\\operatorname{div}(\\rho u)=0, \\quad \\partial_t(\\rho u)+\\operatorname{div}\\left(\\rho u\\otimes u+p\\,I_{3}\\right)=-\\,\\frac{\\mu}{(1+t)^{\\lambda}}\\,\\rho u, \\quad \\rho(0,x)=\\bar \\rho+\\varepsilon\\rho_0(x),\\quad u(0,x)=\\varepsilon u_0(x), $$ where $x\\in\\mathbb R^3$, $\\mu>0$, $\\lambda\\geq 0$, and $\\bar\\rho>0$ are constants, $\\rho_0,\\, u_0\\in C_0^{\\infty}(\\mathbb R^3)$, $(\\rho_0, u_0)\\not\\equiv 0$, $\\rho(0,\\cdot)>0$, and $\\varepsilon>0$ is sufficiently small. For $0\\leq\\lambda\\leq1$, we show that there exists a global smooth solution $(\\rho, u)$ when $\\operatorname{curl} u_0\\equiv 0$, while for $\\lambda>1$, in general, the solution $(\\rho, u)$ will blow up in finite time. Therefore, $\\lambda=1$ appears to be the critical value for the global existence of small amplitude smooth solutions.", "revisions": [ { "version": "v1", "updated": "2015-10-15T16:35:19.000Z" } ], "analyses": { "subjects": [ "35L70", "35L65", "35L67", "76N15" ], "keywords": [ "compressible euler equation", "global existence", "time-depending damping", "small amplitude smooth solutions", "global smooth solution" ], "note": { "typesetting": "TeX", "pages": 28, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv151004613H" } } }