{ "id": "1510.04419", "version": "v1", "published": "2015-10-15T07:02:39.000Z", "updated": "2015-10-15T07:02:39.000Z", "title": "Characteristic polynomials of typical matrices are ill-conditioned", "authors": [ "Peter Buergisser", "Felipe Cucker", "Elisa Rocha Cardozo" ], "categories": [ "math.NA" ], "abstract": "We prove that the expectation of the logarithm of the condition number of each of the zeros of the characteristic polynomial of a complex standard Gaussian matrix is $\\Omega(n)$. This gives a rigorous justification of the common wisdom in numerical linear algebra that advises against computing eigenvalues via root-finding for characteristic polynomials.", "revisions": [ { "version": "v1", "updated": "2015-10-15T07:02:39.000Z" } ], "analyses": { "keywords": [ "characteristic polynomial", "typical matrices", "complex standard gaussian matrix", "condition number", "common wisdom" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv151004419B" } } }