{ "id": "1510.04184", "version": "v1", "published": "2015-10-14T16:14:53.000Z", "updated": "2015-10-14T16:14:53.000Z", "title": "Finiteness of the topological rank of diffeomorphism groups", "authors": [ "Azer Akhmedov" ], "categories": [ "math.GR", "math.DS", "math.GT" ], "abstract": "For a compact smooth manifold $M$ (with boundary) we prove that the topological rank of the diffeomorphism group Diff$_0^k(M)$ is finite for all $k\\geq 1$. This extends a result from [2] where the same claim is proved in the special case of dim M = k = 1.", "revisions": [ { "version": "v1", "updated": "2015-10-14T16:14:53.000Z" } ], "analyses": { "keywords": [ "topological rank", "finiteness", "compact smooth manifold", "diffeomorphism group diff", "special case" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv151004184A" } } }