{ "id": "1510.03879", "version": "v1", "published": "2015-10-13T20:21:19.000Z", "updated": "2015-10-13T20:21:19.000Z", "title": "Compactness results for the $p$-Laplace equation", "authors": [ "Marino Badiale", "Michela Guida", "Sergio Rolando" ], "comment": "arXiv admin note: substantial text overlap with arXiv:1403.3803", "categories": [ "math.AP", "math.FA" ], "abstract": "Given $10$, $r>0$, we define the weighted spaces \\[ W=\\left\\{ u\\in D^{1,p}(\\mathbb{R}^N):\\int_{\\mathbb{R}^N}V\\left(\\left|x\\right|\\right) \\left|u\\right|^p dx<\\infty \\right\\} , \\quad L_{K}^q =L^q(\\mathbb{R}^N,K\\left( \\left| x\\right| \\right) dx) \\] and study the compact embeddings of the radial subspace of $W$ into $L_{K}^{q_1}+L_{K}^{q_2}$, and thus into $L_{K}^q$ ($=L_{K}^q+L_{K}^q$) as a particular case. Both exponents $q_1,q_2,q$ greater and lower than $p$ are considered. Our results do not require any compatibility between how the potentials $V$ and $K$ behave at the origin and at infinity, and essentially rely on power type estimates of their relative growth, not of the potentials separately.", "revisions": [ { "version": "v1", "updated": "2015-10-13T20:21:19.000Z" } ], "analyses": { "subjects": [ "46E35", "46E30", "35J92", "35J20" ], "keywords": [ "laplace equation", "compactness results", "power type estimates", "compact embeddings", "potentials" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv151003879B" } } }