{ "id": "1510.03684", "version": "v1", "published": "2015-10-13T14:10:33.000Z", "updated": "2015-10-13T14:10:33.000Z", "title": "On the discretization in time of the stochastic Allen-Cahn equation", "authors": [ "Mihály Kovács", "Stig Larsson", "Fredrik Lindgren" ], "comment": "34 pages", "categories": [ "math.NA", "math.PR" ], "abstract": "We consider the stochastic Allen-Cahn equation perturbed by smooth additive Gaussian noise in a spatial domain with smooth boundary in dimension $d\\le 3$, and study the semidiscretisation in time of the equation by an Euler type split step method. We show that the method converges strongly with a rate $O(\\Delta t^{\\gamma}) $ for any $\\gamma<\\frac12$. By means of a perturbation argument, we also establish the strong convergence of the standard backward Euler scheme with the same rate.", "revisions": [ { "version": "v1", "updated": "2015-10-13T14:10:33.000Z" } ], "analyses": { "subjects": [ "60H15", "60H35", "65C30" ], "keywords": [ "stochastic allen-cahn equation", "euler type split step method", "discretization", "smooth additive gaussian noise", "standard backward euler scheme" ], "note": { "typesetting": "TeX", "pages": 34, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv151003684K" } } }