{ "id": "1510.03679", "version": "v1", "published": "2015-10-13T14:06:50.000Z", "updated": "2015-10-13T14:06:50.000Z", "title": "Bounds for the multivariate normal approximation of the maximum likelihood estimator", "authors": [ "Andreas Anastasiou" ], "comment": "29 pages", "categories": [ "math.ST", "stat.TH" ], "abstract": "The asymptotic normality of the maximum likelihood estimator (MLE) under regularity conditions is a cornerstone of statistical theory. In this paper, we give explicit upper bounds on the distributional distance between the distribution of the MLE of a possibly-high dimensional parameter, and the multivariate normal. An explicit analytical expression of the MLE is not required and the random vectors are independent but not necessarily identically distributed.", "revisions": [ { "version": "v1", "updated": "2015-10-13T14:06:50.000Z" } ], "analyses": { "subjects": [ "62F12" ], "keywords": [ "maximum likelihood estimator", "multivariate normal approximation", "explicit upper bounds", "possibly-high dimensional parameter", "regularity conditions" ], "note": { "typesetting": "TeX", "pages": 29, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv151003679A" } } }