{ "id": "1510.03606", "version": "v1", "published": "2015-10-13T09:54:56.000Z", "updated": "2015-10-13T09:54:56.000Z", "title": "Dependence with complete connections and the Gauss-Kuzmin theorem for N-continued fractions", "authors": [ "Dan Lascu" ], "comment": "19 pages", "categories": [ "math.NT" ], "abstract": "We consider a family $\\{T_N:N \\geq 1 \\}$ of interval maps as generalizations of the Gauss transformation. For the continued fraction expansion arising from $T_N$, we solve its Gauss-Kuzmin-type problem by applying the theory of random systems with complete connections by Iosifescu.", "revisions": [ { "version": "v1", "updated": "2015-10-13T09:54:56.000Z" } ], "analyses": { "subjects": [ "11J70", "11K50" ], "keywords": [ "complete connections", "gauss-kuzmin theorem", "n-continued fractions", "dependence", "random systems" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv151003606L" } } }