{ "id": "1510.03481", "version": "v1", "published": "2015-10-12T23:03:35.000Z", "updated": "2015-10-12T23:03:35.000Z", "title": "Incidences between planes over finite fields", "authors": [ "Nguyen Duy Phuong", "Thang Pham", "Le Anh Vinh" ], "categories": [ "math.CO" ], "abstract": "We use methods from spectral graph theory to obtain bounds on the number of incidences between $k$-planes and $h$-planes in $\\mathbb{F}_q^d$ which generalize a recent result given by Bennett, Iosevich, and Pakianathan (2014). More precisely, we prove that the number of incidences between a set $\\mathcal{P}$ of $k$-planes and a set $\\mathcal{H}$ of $h$-planes with $h\\ge 2k+1$, which is denoted by $I(\\mathcal{P},\\mathcal{H})$, satisfies \\[\\left\\vert I(\\mathcal{P},\\mathcal{H})-\\frac{|\\mathcal{P}||\\mathcal{H}|}{q^{(d-h)(k+1)}}\\right\\vert \\lesssim q^{\\frac{(d-h)h+k(2h-d-k+1)}{2}}\\sqrt{|\\mathcal{P}||\\mathcal{H}|}. \\]", "revisions": [ { "version": "v1", "updated": "2015-10-12T23:03:35.000Z" } ], "analyses": { "keywords": [ "finite fields", "incidences", "spectral graph theory", "pakianathan" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv151003481D" } } }