{ "id": "1510.03150", "version": "v1", "published": "2015-10-12T06:06:34.000Z", "updated": "2015-10-12T06:06:34.000Z", "title": "The universality of the Rezk nerve", "authors": [ "Aaron Mazel-Gee" ], "categories": [ "math.AT", "math.CT" ], "abstract": "We functorially associate to each relative $\\infty$-category $(R,W)$ a simplicial space $N^R_\\infty(R,W)$, called its Rezk nerve (a straightforward generalization of Rezk's \"classification diagram\" construction for relative categories). We prove the following local and global universal properties of this construction: (i) that the complete Segal space generated by the Rezk nerve $N^R_\\infty(R,W)$ is precisely the one corresponding to the localization $R[[W^{-1}]]$; and (ii) that the Rezk nerve functor defines an equivalence $RelCat_\\infty [[ W_{BK}^{-1} ]] \\xrightarrow{\\sim} Cat_\\infty$ from a localization of the $\\infty$-category of relative $\\infty$-categories to the $\\infty$-category of $\\infty$-categories.", "revisions": [ { "version": "v1", "updated": "2015-10-12T06:06:34.000Z" } ], "analyses": { "keywords": [ "universality", "rezk nerve functor defines", "complete segal space", "global universal properties", "localization" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv151003150M" } } }