{ "id": "1510.02748", "version": "v1", "published": "2015-10-09T17:36:00.000Z", "updated": "2015-10-09T17:36:00.000Z", "title": "Quasistatic dynamics with intermittency", "authors": [ "Juho Leppänen", "Mikko Stenlund" ], "comment": "20 pages", "categories": [ "math.DS", "math-ph", "math.MP", "math.PR" ], "abstract": "We study an intermittent quasistatic dynamical system composed of nonuniformly hyperbolic Pomeau--Manneville maps with time-dependent parameters. We prove an ergodic theorem which shows almost sure convergence of time averages in a certain parameter range, and identify the unique physical family of measures. The theorem also shows convergence in probability in a larger parameter range. In the process, we establish other results that will be useful for further analysis of the statistical properties of the model.", "revisions": [ { "version": "v1", "updated": "2015-10-09T17:36:00.000Z" } ], "analyses": { "subjects": [ "37C60", "37D25", "37A10", "37A30" ], "keywords": [ "quasistatic dynamics", "intermittency", "larger parameter range", "intermittent quasistatic dynamical system", "nonuniformly hyperbolic pomeau-manneville maps" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv151002748L" } } }