{ "id": "1510.02579", "version": "v1", "published": "2015-10-09T07:09:38.000Z", "updated": "2015-10-09T07:09:38.000Z", "title": "Exceptional Hahn and Jacobi orthogonal polynomials", "authors": [ "Antonio J. DurĂ¡n" ], "comment": "arXiv admin note: substantial text overlap with arXiv:1310.4658, arXiv:1309.1175", "categories": [ "math.CA" ], "abstract": "Using Casorati determinants of Hahn polynomials $(h_n^{\\alpha,\\beta,N})_n$, we construct for each pair $\\F=(F_1,F_2)$ of finite sets of positive integers polynomials $h_n^{\\alpha,\\beta,N;\\F}$, $n\\in \\sigma _\\F$, which are eigenfunctions of a second order difference operator, where $\\sigma _\\F$ is certain set of nonnegative integers, $\\sigma _\\F \\varsubsetneq \\NN$. When $N\\in \\NN$ and $\\alpha$, $\\beta$, $N$ and $\\F$ satisfy a suitable admissibility condition, we prove that the polynomials $h_n^{\\alpha,\\beta,N;\\F}$ are also orthogonal and complete with respect to a positive measure (exceptional Hahn polynomials). By passing to the limit, we transform the Casorati determinant of Hahn polynomials into a Wronskian type determinant of Jacobi polynomials $(P_n^{\\alpha,\\beta})_n$. Under suitable conditions for $\\alpha$, $\\beta$ and $\\F$, these Wronskian type determinants turn out to be exceptional Jacobi polynomials.", "revisions": [ { "version": "v1", "updated": "2015-10-09T07:09:38.000Z" } ], "analyses": { "subjects": [ "42C05", "33C45", "33E30" ], "keywords": [ "jacobi orthogonal polynomials", "second order difference operator", "casorati determinant", "wronskian type determinants turn", "exceptional hahn polynomials" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }