{ "id": "1510.02218", "version": "v1", "published": "2015-10-08T07:58:25.000Z", "updated": "2015-10-08T07:58:25.000Z", "title": "Spectral properties of matrix-valued discrete Dirac system", "authors": [ "Yelda Aygar", "Elgiz Bairamov", "Seyhmus Yardımcı" ], "categories": [ "math.FA" ], "abstract": "In this paper, we find a polynomial-type Jost solution of a self-adjoint matrix-valued discrete Dirac system. Then we investigate analytical properties and asymptotic behavior of this Jost solution. Using the Weyl compact perturbation theorem, we prove that matrix-valued discrete Dirac system has continuous spectrum filling the segment $[-2,2].$ Finally, we examine the properties of the eigenvalues of this Dirac system and we prove that it has a finite number of simple real eigenvalues.", "revisions": [ { "version": "v1", "updated": "2015-10-08T07:58:25.000Z" } ], "analyses": { "keywords": [ "spectral properties", "self-adjoint matrix-valued discrete dirac system", "weyl compact perturbation theorem", "polynomial-type jost solution", "simple real eigenvalues" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv151002218A" } } }