{ "id": "1510.01409", "version": "v1", "published": "2015-10-06T01:33:08.000Z", "updated": "2015-10-06T01:33:08.000Z", "title": "Multi-bump solutions for Choquard equation with deepening potential well", "authors": [ "Claudianor O. Alves", "Alânnio B. Nóbrega", "Minbo Yang" ], "comment": "26pages", "categories": [ "math.AP" ], "abstract": "We study the existence of multi-bump solutions to Choquard equation $$ \\begin{array}{ll} -\\Delta u + (\\lambda a(x)+1)u=\\displaystyle\\big(\\frac{1}{|x|^{\\mu}}\\ast |u|^p\\big)|u|^{p-2}u \\mbox{ in } \\,\\,\\, \\R^3, \\end{array} $$ where $\\mu \\in (0,3), p\\in(2, 6-\\mu)$, $\\lambda$ is a positive parameter and the nonnegative function $a(x)$ has a potential well $ \\Omega:=int (a^{-1}(0))$ consisting of $k$ disjoint bounded components $ \\Omega:=\\cup_{j=1}^{k}\\Omega_j$. We prove that if the parameter $\\lambda$ is large enough then the equation has at least $2^{k}-1$ multi-bump solutions.", "revisions": [ { "version": "v1", "updated": "2015-10-06T01:33:08.000Z" } ], "analyses": { "subjects": [ "35J20", "35J20", "35J65" ], "keywords": [ "multi-bump solutions", "choquard equation", "deepening potential", "disjoint bounded components" ], "note": { "typesetting": "TeX", "pages": 26, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv151001409A" } } }